
 37

2 — Requiem for the
 Computational Theory of Mind†

 Preamble
Thanks to Terry Horgan, for that very gracious introduction.
Thanks too to Güven Güzeldere and Stevan Harnad, for an ex-
cellent anniversary program. Thanks to the ever-gracious Betty
Stanton, also, for taking the time to return to what we all know is
her real home. And thanks to Ken Taylor, for the heroic job of
local arrangements.

I also want to thank CSLI—the Center for the Study of Lan-
guage and Information—for their financial support and help in
hosting this meeting. I cut my teeth at CSLI; it is good to be home,
and to give it public credit.

At first, in fact, I wondered whether I should not speak on a topic
related to CSLI’s theories of situated language. I had in mind the
double-indexical theory of truth, which mysteriously seems to
have escaped John Perry’s attention: why we say “here, here”1 to
mark propositions with which we agree; “there, there,” to mark
those with which we do not. You might think proximity signals
approval. But that cannot be right, since “now, now” indicates
protestation, not approbation. The phenomenon must be related
to that famous Morganbesser quip: that “yeah, yeah” shows how

†Presidential Address, 25th Anniversary Meeting, Society for Philosophy
& Psychology, June 21, 1999. The talk is reproduced exactly as given, orally,
complete with introductory remarks, in order to preserve the decidedly infor-
mal character of the (after-dinner) setting.

1It was fortunate thing that this was a talk.

38 Indiscrete Affairs · II

two positives can make a negative. Beyond that, illumination
awaits.

I store my notes about these deep issues in a file in the corner
of my hard drive, under the heading “Questions of great philoso-
phical significance in which I have never been able to interest any
philosopher.” Here is another. Suppose one refers to the sun.
How long does it take reference to get there? At this very institu-
tion, I once asked the question of no less a luminary than Alonzo
Church, who (without batting an eyelash) said that reference
“travels at the speed of logic” (I take it that is supposed to be fast).
Problem is, I thought physicists had dispatched the notion of si-
multaneity to the same dust heap as the luminiferous ether. So
there is an issue to be resolved. Is Brentano’s arrow of directed-
ness genuinely superluminary? Do we need Bell’s theorem?
Maybe Penrose missed his calling. Haven’t you sometimes wished
he had studied semantics?

Fortunately, I will not talk about these issues, either, since I
know nothing about relativity. Rather than speculate about
things I do not understand, in fact, I will confine my remarks to
something I do. That is: I will return to my home field
of…psychology.

Now you may not have realised that I am a psychologist. Neither
did I, till I was so generously offered this position. I have certainly
never taken any psychology courses—as my colleagues at Indiana
will readily attest. But it is a tradition for the presidency of SPP to
alternate, with philosophy presidents on even years, psychology
presidents on odd. Last year (1998) we had Bob McCauley; next
(2000), Terry Horgan—both with intensionally-correct PhDs.
The odd years are reserved for us scientific pretenders.

For that is what really matters: not what I am, but what I am
not. I fall in the “other” category. And that seems just right. For I
have always viewed SPP as something of a philosophers’ “at
home”—a party, hosted by philosophers, for scientists interested
in the mind. The philosophers have a chance to find out what is
actually true; we scientists undergo a little conceptual grooming.
And the food is great.

From that perspective, coming from computer science (my real
home) seems appropriate enough. For nothing, arguably, so uni-

 2 · Requiem for the Computational Theory of Mind

 39

fied cognitive science over its first twenty-five years, and the phi-
losophy of mind along with it, as the computational theory of
mind. Or nothing did unify it. Paradoxically, as you have un-
doubtedly noticed, computational presence in cognitive science
has recently been on the wane. Where I teach, telling students to
read about the computational theory of mind these days is rather
like recommending they listen to Mantovani (or even Montever-
di). And I am not even fifty.

So that is what I really want to talk about tonight. What hap-
pened to the twenty-five-year-old conversation between comput-
ing and the philosophy of mind?

 1 Talking to philosophers
I will get to the content of that conversation in a moment. First,
though, a word about talking to philosophers.

As anyone from the provinces—oops, sciences—will tell you,
talking to philosophers is a little strange. They talk a lot, first of
all; that much is hard to miss. They use odd constructions—
hypotheticals three layers deep, with patently untrue premises,
somehow convinced that the conclusions still matter. And they
talk fast. Except, as I discovered, it s a very special version of fast.
Not just 217 words per minute (I tried that, once—no one un-
derstood a word). Rather: fast at clause boundaries, when the
situation is vulnerable, lest someone take the floor. As long as you
are manifestly mid-clause, however—grammatically safe from
coming to the end—you can slow down to a reasonable speed, so
that everyone can follow. Arvind Joshi should study the stuff.

More seriously, different norms apply. In computer science,
papers report on research; in philosophy, they are research. When
I first showed a paper to a philosopher, I felt as if I had given
them a map of buried treasure—only to have them respond:
“Great; such an exemplary map! Such good lines. All the labels
are so well arranged. You can see these nice paths.” Good of them
and all…but, well, it was the treasure I was trying to interest them
in. This difference must in part be because computer science is
essentially engineering. Its methods are neither theoretical nor
empirical, but synthetic. Never forget this fact: it is what we build,
not what we say, that matters.

40 Indiscrete Affairs · II

All these things can be learned, and partially accommodated-
though as we will see, they have more impact than one might ex-
pect. And they are laced with another distracting issue: of vo-
cabulary.

As everyone knows, philosophy, like physics, uses ordinary
English for its technical terminology-a trap for the unwary. As do
all other cognitive sciences. It might not be so bad, except-have
you noticed?—they all use the same 200 words, but with different
meanings. Object, concept, variable, function, model, class, meaning,
semantics, reference, identifier, interpretation, binding, type—every
one of these terms has a demonstrably different meaning across
SPP’s constituent fields. It makes me wish that interdisciplinary
conferences would provide U.N.-style instantaneous translation
into different disciplines. Go to a psychology talk, put on head-
phones, dial the switch, and presto!—you would hear it trans-
lated into linguistics. Feminist cultural theory, translated into
analytic epistemology! On-the-fly translation between analytic
and continental! Twenty years ago, not entirely facetiously, I sug-
gested to Harry and Betty that Bradford Books publish a diction-
ary of these 200 words, with entries for how each is used in each
cognitive discipline. When we were setting up CSLI, we even con-
sidered appointing a “technical term librarian”: anyone planning
to use a term in a technical sense would be required to sign it out-
and promise to return it on a pre-assigned date.

The vocabulary problem is particularly acute between comput-
ing and philosophy, for an interesting historical reason. Com-
puter science took many of its technical terms—language, seman-
tics, variable, name, identifier, syntax, etc.—from philosophical
logic, but then, like any good science, proceeded to change their
meanings. This has had the unfortunate consequence of allowing
some philosophers to think they understand what computer sci-
entists are saying. Consider Searle. While I doubt that he has
spent much time hacking C++ code or writing Java applets, he
nevertheless thinks he knows what computation is—in spite of
the fact that I do not know a single programmer who thinks he
even remotely “gets it.” Why does Searle think this? Because we
describe our machines using his words. Everything we say; it all
sounds so familiar, to him. Searle would be right, I tell my stu-
dents, if computer scientists’ own descriptions were interpreted

 2 · Requiem for the Computational Theory of Mind

 41

on the assumption that the words mean what they do in logic
(which is where we got them from).

And his case is not unique. Unrecognised overlaps in technical
vocabulary continue to sew conceptual misunderstandings about
the foundations of our interdisciplinary project. A critical exam-
ple is going to play a role in tonight’s story, having to do with the
word ‘computation.’

 2 The computational theory of mind
So let’s turn to that. As I said, the real excitement in cognitive sci-
ence, back in the 1970s, had to do with this thing called the com-
putational theory of mind. You all know the story: a set of in-
ternal words or sentence-like tokens—items in a language of
thought—that (i) carry content (mean something) about situa-
tions or states of affairs in the world, but (ii) are manipulated
internally, not in virtue of that content, but instead in virtue of
their abstract shape or “form.” As in logic (too much as in logic, as
we will see). This catechism was chanted in the halls of every self-
respecting philosophy and cognitive science department.

To understand this hypothesis, and the excitement it gener-
ated, we have to back up a bit.

The basic situation everyone was wrestling with—psychologists,
philosophers, computer scientists alike—had to do with inten-
tionality. And intentionality, on widely-shared metaphysical as-
sumptions, involves an interplay between meaning and mecha-
nism. This dialectic had occupied people’s imagination for centu-
ries: how a “mere mechanism”—naught but a lump of clay—
could sit up and think: reason, wonder, dream, even be conscious.

Crucially, minds and computers are both intentional, and so
both instantiate the meaning/mechanism dialectic. Take the
mechanism side. That computers are mechanisms is obvious; that
minds are mechanisms did not use to be obvious, but most aca-
demics believe it now. Similarly on the meaning side. Once again,
it is obvious that minds involve meaning (meaningfulness is a
prime candidate for the “mark of the mental”). That computers
traffic in meaning is equally evident, if you look at practice. Com-
putational discourse is rife with intentional words: information
processing, programming languages, data bases, knowledge represen-

42 Indiscrete Affairs · II

tation systems, simulations, models, correctness, and so on.
Moreover, it is only because both minds and computers are in-

tentional that there was any reason to suppose the computers
might be intelligent—that computers were relevant to mind, that
we might be computers. In most other ways, after all (physical
make-up, price, eating habits, etc.) computers and people are al-
most completely different.2

But the idea that excited people, back in the 1970s, was not
simply that computers, like us, were intentional—that we were
building, not just growing, intentionality. What set the world on
fire was something more pointed: a belief that computers were
special—that Turing (or someone) had discovered a distinctive
way of merging meaning and mechanism—a way that had no one
had understood before, had now been discovered, was embodied

in Turing machines and Eniacs and
Pentiums, and might even—who
knows?—be embodied in minds. It was
this “something special” that was called
computing.

It is critical to understand the im-
portance of the “specialness”—this idea
that there was a distinct, identifiable,
scientific property “being a computer”
or “being computational,” which was:
(i) uniquely true of all and only com-
puters; (ii) would play a role in scien-
tific laws; and (iii) might be relevant to
understanding the mind. Fodor is per-

fectly clear about this in “Methodological Solipsism.”3 That peo-
ple were general intentional systems (or even, somewhat more
narrowly, general representational systems) he took to be obvi-
ous-and boring. The computational theory of mind, on the other
hand, he took to be non-obvious, and exciting. It was non-
obvious and exciting because there was something distinctive

2I once gave a talk arguing that the most important difference between
computers and people was that computers have back-up tapes. It seemed
innocent enough—until, when I arrived at the occasion, I discovered that
it was being hosted at a senior citizen home.

3Fodor (19■■).

Figure 1 — Computing as special

 2 · Requiem for the Computational Theory of Mind

 43

about being computational. Computer science had had an idea.
That was Turing’s brilliance.

Perhaps a picture will help (figure 1). The larger circle is the
space of all (perhaps all possible) intentional systems; the smaller
one is the space of all computers or computational systems. The
“computing” idea we are talking about is the (characteristic) prop-
erty of the subset.

So that was context in cognitive science mid 1970s—which, as
it happens, was when I went to graduate school at MIT.

Now you have to understand what it was like to come to philoso-
phy from computing, only to discover it was all excited about
your field. It was a little like reading about your area of expertise
in the New York Times: thrilling headlines—but a bit queasy-
making, as soon as you started to read. In particular, it was not
clear what philosophers actually knew about computing. In “Tom
Swift and his Procedural Grandmother,”4 Fodor said that “provid-
ing a compiler for a language is tantamount to specifying a [proce-
dural] semantic theory for that language.” Compiler? Did he maybe
mean interpreter? (Compiling is just translating; it does not make
things actually happen.)

So I went to talk to Fodor. “How do you know that computers
work in the way you describe?”, I asked. Now Fodor, modulo a
certain bluster, is a pretty honest guy. “I made it up!”, he said.
“Look,” he went on, “you are the computer scientist; it works in
whatever way you think it does.”

“If your understanding rests on my understanding,” I thought,
“then you are in trouble.”

Seriously, here was the situation. Computer science—or compu-
tational practice, or something like that—was supposed to be
supplying cognitive science with an idea: an account of the prop-
erty “computational,” on which the computational theory of mind
could rest. The catechism—the claim that computation was for-
mal symbol manipulation—was, I took it, philosophy’s best at-
tempt to describe that property.

I was supposed to represent computer science. Sure enough, I

4Fodor (19■■).

44 Indiscrete Affairs · II

knew how to design programming languages, write compilers,
build operating systems. But an idea? An idea good enough for
philosophy? That is serious. I wasn’t at all sure about that.

 3 Formal Symbol Manipulation
So while most people in cognitive science busied themselves with
their main project—to find out whether formal symbol manipu-
lation was true of mind—I set out on a parallel, side path: to find
out whether it was true of computers—specifically, what I call com-
putation in the wild:5 concrete, real-world systems. That is, to
put it as bluntly as possible: I set out to determine the truth of the
following radical thesis: the computational theory of computing.

The natural way to do this, you might think, would be to ask
computer scientists, or look at computer science—at the disci-
pline that builds and studies and theorises computing—and see
whether it takes computing to be formal symbol manipulation.
Not that their answer would necessarily be definitive; computer
science could be wrong. But it is not often that a whole field is
wrong. Anyway, it seemed like a good place to start.

So I went to computer science, and “asked it,” as it were,
whether it thought computers were formal symbol manipulators.

Computer scientists had never heard of formal symbol ma-
nipulation. They did not know what I was talking about.

Now this is a bit tricky, so bear with me. Computer science had
heard the words ‘formal symbol manipulation.’ In fact they used
the words—or rather, correlative words from logic—syntax, se-
mantics, model, interpretation, completeness, etc. But remember
what I said about vocabulary. They used the same words, but they
meant different things! On the surface, it sounded as if we were
talking about the same things. But if you pushed, in order to
make sure that we were really on the same wavelength, it turned
out that they were talking about something else.

What computer scientists had heard about was Turing. And
Fodor was certainly right about one thing: Turing was one smart
guy (I would definitely recommend him for tenure). But as for

5With an apology to Ed Hutchins.

 2 · Requiem for the Computational Theory of Mind

 45

understanding formal symbol manipulation, I sometimes think
Turing was the villain. Because if you look hard at the original
Turing papers, he almost drops the ball with respect to the criti-
cal issue for formal symbol manipulation: namely, the symbol
part, the part having to do with representation. And make no mis-
take: formal symbol manipulation is an idea about the processing
of semantically interpreted structures (as I have said elsewhere, if
you are not interested in semantics, then you should call your
thesis “stuff manipulation”6). Turing’s 1937 paper7 opens with
laudable representational clarity: “the computation of functions
whose representation as a decimal can be calculated by finite
means.”8 But by the time you get to the middle—to all that stuff
about universal machines and modelling and quadruples and
what functions can be computed and so on and so forth—the dif-
ference between numbers and numerals has been stirred into
oblivion. And as everyone knows, if you cannot tell a number
from a numeral—if you do not mind your “uses” and your “men-
tions”—you definitely are not going to be invited to the next phi-
losophers’ party.

No, the theory of Turing machines, I have come to believe—
and of effective computability, and complexity theory, and just
about all the theoretical edifice of theoretical computer science—
is not about formal symbol manipulation at all! It is about some-
thing else. What else? I will get back to you in a minute on that.

But back to the main plot. Here I was, trying to figure out
whether computers were formal symbol manipulators. Theoreti-
cal computer science was no help. And so I had to do my own
empirical study.

It sure took me long enough (going on thirty years). But I can
now tell you the answer.

The answer is no.

There are many reasons. Tonight I will just quickly mention two.
The way to figure out whether computers are formal symbol

6Smith (19■■).
7Turing (19■■).
8 «check, and refer»

46 Indiscrete Affairs · II

manipulators is to see how formal symbol manipulation is spe-
cial—and then to see whether real-world computers are special in
that way. That is, one needs to see what essential restriction for-
mal symbol manipulation places on general intentional systems—
what exactly it is that formal symbol manipulation claims distin-
guishes the smaller inner circle from the broader outer one—and
then determine whether the resulting restricted class coincides
with the class of computers in the wild.

Now formal symbol manipulation, interestingly enough, is not
itself a formal thesis, and so it is not exactly clear what it means.
But after long study I have determined that, at least at a mini-
mum, it places the following two restrictions on intentionality:

1. That there be symbols; and
2. That they be manipulated formally.

I will look briefly at each.

 3a Language-like tokens
Start with the symbols. In this context, symbols are taken to be
elements in an explicit, compositional array of language-like (rep-
resentational) tokens. And on this characterisation, it sure seems
as if computing involves symbols. Just look at an ordinary pro-
gram-in, say, an Emacs buffer:9

if empty (paper-tray)
 then display-user dialogue-box(“out of paper”)
 else start-copying ... whatever

This looks paradigmatically symbolic. But appearance is distract-
ing. There is no more reason to suppose that computing involves
symbols, from looking at a program, than to think that car en-
gines combust symbols, because there are symbols in the blue-
prints used to control the automatic milling machines.10

Sure enough, program ingredients are explicit and language-
like. But programs are completely irrelevant for psychology. Pro-
grams are a convenience we use to constrain universal, general-
purpose computing engines in order to flexibly implement fixed,
task-specific architectures. Sure enough, you can mix and match

9«ref»
10See Smith (19■■).

 2 · Requiem for the Computational Theory of Mind

 47

identifiers and so forth, when writing a program-as composition-
ality and productivity require. But once the writing is done, the
resulting program is held constant, during its execution11—
invisible to the process it describes. It could as well be eliminated
(and often is eliminated, by the compiler).12

What matters to psychology is
not programs, but the processes and
architectures those programs specify:
how they operate, interact with the
world, modify their internal state
(see figure 2). And the state-bearing
ingredients inside such processes are
called data structures. So the question
we need to ask, with respect to the
computational theory of computing,
and thus before we take up any sub-
sequent question about the computa-
tional theory of mind, is the follow-
ing one: are data structures explicit,
language-like tokens? The answer, in
general, is no. (Do not be distracted
by the fact that they are given names
in programs. That is irrelevant; those

names are not themselves the data structures; they (like all
names) are names: they denote data structures—just as names of
engine parts denote pieces of steel.) In the vast majority of cases,
data structures are highly-constrained, purpose-specific, and non-
generic. They have none of the properties that Fodor, Pylyshyn,
Evans, van Gelder, and others think symbols have: of modularly
designating arbitrary predicates or relations, that, modulo certain
appropriateness conditions, can be algebraically recombined in
systematic and productive ways.13

(In passing, I might note that the program-process relation, la-
belled a in the diagram, is what computer science calls “seman-
tics.” What we in computer science are interested in is the rela-

11Except for self-modifying programs, of which there are virtually none.
12Taken from Smith (19■■), page ■■.
13See for example Fodor & Pylyshyn (19■■), Evans (19■■), and van
Gelder (19■■).

Figure 2 — Program, Process,
and Task Domain

48 Indiscrete Affairs · II

tion labelled b in the diagram, between the thereby-specified
processes and the worlds or task domains that the processes are
about. To distinguish, we might call these program semantics and
process semantics, respectively. This is one example of the sort of
terminological confusion I mentioned at the outset.)

Admittedly, some computer systems employ symbols: theorem
provers, expert systems—plus of course interpreters and compil-
ers. But those, I venture to say, comprise no more than one per-
cent of the programs that are written. Compared to them, there
are hundreds of billions (if not trillions) of lines of commercial
code that are not symbolic. These real-world programs—or rather,
real-world processes—are tacit, implicit, non-conceptual. (Just
try asking Windows NT why it put up a blue screen of death. Or
Unix whether it likes thrashing so much. Or Deep Blue whether
any of the arrangements of pieces of any of the configurations it
examined reminded it of the face of its designer.)

And so restricting intentionality to symbol-using systems is
vastly too narrow to capture computation in the wild.

 3b Independent of semantics
OK, so that is the first reason that real-world computing is not
formal symbol manipulation: there are no symbols (in the re-
quired sense). The second reason is that they are not manipulated
formally. That is: data structures are not—at least in general—
manipulated independent of their semantics.

Now that phrase—”independent of semantics”—is as recalci-
trant as any in the philosophy of mind. Let me just say this about
it. The systems where it is motivated—where there is some rea-
son to think it is true—are those systems that are entirely discon-
nected or detached from their subject matters: theorem provers prov-
ing theorems about inaccessible cardinals, NASA simulation sys-
tems figuring out whether a rocket will venture outside the solar
system—things like that. Where the independent-of-semantics
mandate is not reasonable is where systems are thickly engaged,
causally, with their subject matters. This is well-recognised: De-
vitt, Levine, Anthony, and others have pointed out that the for-
mality condition is difficult even to understand, and almost cer-

 2 · Requiem for the Computational Theory of Mind

 49

tainly not true, in cases of transducers.14 And there is Fodor’s
own telling comment: “Please don’t ask me about transducers; I
am particularly busy just now.”15

So the formality condition is (arguably) true when systems are
disconnected. Is that a necessary condition on computation in the
wild? What about those trillion lines of commercial code?

The answer is interesting. By far the majority of those programs
that are good programs—situations where computing systems
have proved resilient and successful—are cases where computers
traffic, directly, in their subject matters: network routers, compil-
ers, window systems, document processing systems, email pro-
grams, web browsers, and so on. Especially in those situations in
which it is most successful, computation in the wild, far from being
detached, is highly involved in its subject matter.

In sum: once we set overlapping vocabulary aside, and look the
subject matter squarely in the face, we are forced to conclude that
real-world computing is not formal symbol manipulation.

It is all a bit ironic. It turned out that what I was discovering, on
my side path, was the same lesson the main body of cognitive sci-
ence was discovering, about people. Just as they were abandoning
so-called “computational” (i.e., abstract, disconnected, purely
logical) models of mind, in favour of embodied, engaged, interac-
tive alternatives, so too I (and a lot of other computer scientists, I
might add16) were, in our own way, rejecting abstract, disconnected
models of computers, in favour of—you guessed it!—embodied,
engaged, interactive alternatives.

Now this raises an interesting possibility. You might think, given
all these results, that my brief would be to resuscitate the
computational theory of mind. Maybe we can have a new
computational theory of mind, one framed not in terms of the
worn out formal symbol manipulation idea, but in terms of a new
idea—of dynamic, embodied, real-world interactive computing.
Tacit programming. Ready-to-hand software! Whatever. Then

14«Refs»
15«Ref; check with Murat»
16E.g., see Stein (19■■)

50 Indiscrete Affairs · II

gramming. Ready-to-hand software! Whatever. Then the com-
putational theory of mind could be true once again.

As is evident in my title, however, I have come to bury the
computational theory of mind, not to praise it. So I still have
some explaining to do.

 4 Computing
I have said that formal symbol manipulation does not work as a
theory of computing. But I also said that it was not computer sci-
entists’ idea of computing, anyway. So what is their idea. What
does computer science take computers to be?

It turns out there are several answers—several standard candi-
dates. They are all familiar: information processors, digital auto-
mata, rule-governed systems, rule-following systems, physical symbol
systems, etc. Ideas are not the easiest things to count, but by my
lights there are anywhere from half a dozen to a dozen different
such stories. Some (even many) people think that these stories
are all the same—because of various equivalence proofs. But that
is an elementary, if common, mistake. Those equivalence proofs
are extraordinarily coarse-grained, and gloss over everything that
matters for a theory of mind. At the level we care about them, the
ideas all differ, both intensionally and extensionally. A Lincoln
Log contraption (so long as its parts were not information-
bearing), would be a digital state machine, but not an informa-
tion-processor. If continuous representations are possible, which
seems not only possible but likely, then a formal symbol manipu-
lation system could fail to be a digital state machine. And so on.

My real project, therefore, has been to assess not just the for-
mal symbol manipulation idea, but this whole suite of other al-
ternatives—ideas I call ‘construals’ of computing. The plan, for
each, has been to understand where it came from, what it says,
and—crucially—whether it is true of real-world computers. That
is, in terms of our graph, I have wanted to see whether any of
these other alternatives could do better than formal symbol ma-
nipulation idea did in restricting the class of intentional systems
to all and only computers.

I will not bother you with the details. Let me simply cut to the
bottom line. There are three results, of increasing strength.

 2 · Requiem for the Computational Theory of Mind

 51

1. First, none of these other standard construals works, either.
No one alone, nor any group in combination, is strong
enough to delimit the proper computational subset of the
full space of general intentional systems.

2. Second, I was not able to find or make up any non-
standard construal that worked, either. So in the end my
search for a conceptually sound and empirically adequate
theory of computation-in-the-wild failed. After 30 years of
looking, I have come up empty-handed.

3. Third, I did learn something, though. Not only did I fail; I
had to fail. I had to fail because there is no such theory.
There never will be such a theory. There is no theory, be-
cause there is nothing there to have a theory of.

There are not any computers! It is all a hoax, perpetrated by Bill
Gates.

Seriously, of course there are computers. What I am saying is
that the property computational or being a computer does not
pick out a natural or scientific kind. It is not a property that will
figure in scientific laws, or underwrite any deep or interesting sci-
entific generalisations. Nothing of scientific interest holds of a
computer in virtue of its being a computer, or of anything at all in
virtue of its being computational.

In the end, computers turn out to be rather like cars: objects of
inestimable historical and economical and social importance, the
existence of which has and will continue to transform our lives.
Lots of theories apply to cars: physics, thermodynamics, ergo-
nomics, ecology, and so on. But no one writes equations with
CAR(x) in them,17 and very few universities have departments of
automotive science. (I am embarrassed to say that MIT, where I
came from, did have such a department—but hey, it is an engi-
neering school, and anyway, my understanding is that they have
since thought better of it, and shut the place down.)

For “computational” to be a scientific property—for there to be a
theory of computation—as I have said since the beginning, there

17Except of course for John McCarthy and Doug Lenat.

52 Indiscrete Affairs · II

must be something special about computers. It is that “special-
ness” that a theory should capture. And the result of my analy-
sis—the reason why ‘computational’ is not going to survive as a
scientific property—is that there is not anything sufficiently special.
In spite of the press, real-world computers turn out not to be nec-
essarily formal, or necessarily digital, or necessarily abstract, or
necessarily context-independent…or necessarily any other prop-
erty that has been suggested (or that I have been able to find).
Rather, what computers are are dynamic, intentional systems-
socially constructed18 intentional artifacts, the best, at any mo-
ment in history, that we know how to build.

Period. No more and no less. That is all there is to say.

Now, for a computer scientist, you might think that this is a dis-
mal result. On the contrary, however, I believe almost exactly the
opposite: the lack of a theory of computing is the most positive, opti-
mistic, exciting possibility that anyone—even the most unregenerate
computational triumphalist—could possibly hope for. I do admit,
though, that seeing things this way requires a change of perspec-
tive. That change of perspective is something I now want to ex-
plain.

On the old view, computing was taken to be an autonomous, dis-
tinctive subject matter—warranting its own theory, its own aca-
demic department, its own vocabulary. A subject matter whose
name could be chiseled into the facades of twenty-first century
university buildings, alongside physics and mathematics and lit-
erature and maybe even economics. What I am claiming is that it
is no such thing. Rather, what computing is is an historical occa-
sion—a laboratory of middling complexity, between the friction-
less pucks and inclined planes of physics, and the full-blooded
complexity of the human condition, in which to see issues of
meaning and mechanism play out.

To put it in a slogan, computation is a site, not a subject mat-
ter.

18Socially constructed not as a meta-philosophical standpoint, but in the
literal sense of being constructed by groups of people.

 2 · Requiem for the Computational Theory of Mind

 53

A pair of figures may indi-
cate why this is a good re-
sult, not a bad one.

Figure 3 indicates the
traditional view we have
been working with, in
which computing is taken
to be an autonomous dis-
cipline—a subject matter
with its own theories, vo-
cabulary, insights, phe-
nomena. Instead of draw-
ing it as a simple circle, I
have indicated it this time
as a stuffed Erlenmeyer

flask. Inside are the properties and relations classically taken to be
computationally specific: implementation, abstraction, effectiveness,
complexity, and so on. Outside, this time, I have put the rest of the
intellectual map: philosophy, psychology, economics, whatever.

The picture I am recommending is given in figure 4. What I
am indicting, as the result of my 30 years of study, is not the con-
tents of the flask, but the flask itself—the bottled-up corker of an

idea that there is an inter-
esting property of “being a
computer” that separates
what is inside from what is
outside. So what I have
done is to peel back the
flask—undo the conceit
that computational things
are theoretically distinct.
What this allows, as the
picture shows, is that phe-
nomena that have been
studied as computation-
internal are now allowed to
join up with their appropri-
ate partners that have been
thought to be computation-

Figure 3 — Computation as closed

Figure 4 — Computation as open

54 Indiscrete Affairs · II

external.
Take just one example: the question of how a system, de-

scribed at one level of description, relates to that same system, de-
scribed at another (say, lower) level of description. In computing
we call this implementation; there is perhaps no more critical and
powerful a notion. All sorts of issues arise: of virtual machines, of
abstract data types, of implementation boundaries. There is very in-
teresting work going on at the moment breaking down the idea
that such abstraction boundaries are opaque, instead seeing how
properties of the underlying implementation inevitably “shine
through” at upper levels.19 Various labels are used for this- “grey
box” or “glass box” abstraction, for example, in place of the pre-
vailing idea of “black box.” But of course the very same issues are
studied outside computing—for example in philosophy, under
notions of type- and token-reduction, local and global superven-
ience, non-reductive physicalism, etc. And there is interesting
work going on there, too—for example in the literature on emer-
gence. What the idea that computation is a distinct phenomenon
has done is to keep these two discussions apart. Somewhere in
another corner of my hard drive I have another list: titles and ab-
stracts for “PhD theses needing written.”20 One of them is on
bringing these two disciplines together—which after all are talk-
ing about exactly the same thing.

In sum, my original misgivings, in response to Fodor, were
right. Computation does not give us an idea. What it gives us is
something else, entirely—something hugely valuable, I believe,
even a sine qua non without which we will never come to under-
stand the mind. But it is a thing of a completely different kind.
What computing gives us is experience: insights and intuitions
and practice and knowledge about the very same intentional phe-
nomena that are being studied everywhere else. Phenomena, I
might add, about which I do not think we yet have any very good
theories of (but more on that later).

Now I have presented this picture a few times to computer scien-
tists, and I have been stunned by their response. They are surpris-

19«References (e.g. to ‘grey box abstraction,’ IRL work, Kiczales et al., etc.)»
20With apologies to the Pennsylvania Dutch.

 2 · Requiem for the Computational Theory of Mind

 55

ingly agreeable! “It makes sense!” they say. And I agree: there is
something quite deliciously relaxing about it. For one thing, it ca-
ters to their computer scientists’ egos: it means that computation
is not just taking over the world: it is the world (they like that).
But there is more serious agreement. It makes sense, for one
thing, of the daunting and seemingly limitless complexity of com-
putational practice—and the fact that, as the field matures, more
and more kinds of training, more and more kinds of practicioners,
are being drawn into it—from theatre designers to anthropolo-
gists to novelists to quantum physicists.

And yet, needless to say, the reconception I am recommending
is no small change. Just so that we know what is at stake, let me
list just five of its most important consequences.

1. It renders vacuous all statements of the form “computers
can (or cannot) do a” (for any a). Will computers be intel-
ligent? Sure—as soon as we figure out what intelligence is,
and how to construct it. Will computers be our friends?
Yes; if we end up figuring out how to build friends. And
not, if not.

And so on.
Sorry, Bert.

2. It evacuates the computational theory of mind of all intel-
lectual substance. To say that the mind is computational is
nothing more than to say that it is a materially-embodied
intentional system. Which we have known for thousands
of years.

Sorry, Jerry.

3. More strongly, it removes the term ‘computational’ from
all interesting theoretical discourse (except, perhaps, from
historical studies of engineering).

At this point a personal computer was lifted up from underneath the lectern,
placed onto a table, laid it on its side, and draped with a black cloth. At which
point the lecture continued…

4. It implies that the mathematical theory known as the “the-
ory of computation”—the theory of Turing machines, ef-
fective computability, complexity, etc.—must either be (i)

56 Indiscrete Affairs · II

discarded, or (ii) recognised as in fact being a theory of
something else.

Sorry, Dana.

5. It challenges the integrity of computer science depart-
ments.

It is good I have tenure.

These are strong conclusions, but I think they are conclusion we
must embrace.

 5 Conclusion
There are many more things to say. Consider those construals of
computing, for example—all those ideas about what characteris-
tic property identified the computational subset, about what it
was in virtue of which computation was special. I have claimed
there is no such subset to be identified. So they failed in their
original purpose. Does that mean we should throw them away?

No, they can be resurrected—this is a requiem, after all. But as
befits the occasion, the they need to be transformed, in the proc-
ess.

We do not have much time too look at them now. It turns out,
if you do look at them (I cannot resist a few comments!) that each
construal rests on a basic, seminal insight—an idea or intuition
into the nature of (all or some) intentional systems. But in each
case, the construal formulates its insight in particularly stringent
terms. In particular, it formalizes or “absolutizes” its insight:
forces it into black-and-white, all-or-nothing form. In each case,
the absolutist formalisation turns out to be too strong. But if the
black and white nature of the formalisation is relinquished—and
the goal of identifying a computational subset of intentionality
dropped—then the aboriginal insight can be recovered and used
in the only remaining project worth doing: developing a general
theory of intentionality.

The insight underlying formal symbol manipulation has to do
with the tension between the semantic and the effective-in par-
ticular, with how systems have to use what is local and effective in
order to behave appropriately with respect to distal situations
that they are not causally engaged with. In that form, this is an

 2 · Requiem for the Computational Theory of Mind

 57

unbelievably general and important insight, that we should never
lose sight of. In formal guise, though, it ends up claiming that the
semantic and the effective are independent—which as we have
seen, is far too strong.

Even more interesting is the insight underwriting the “theory
of computation” so favored in theoretical computer science. What
it turns out to be, on this reconstruction, is a theory of pure
mechanism. It is not a theory of computing—not just because
there is no such thing as computing for it to be a theory of, but
also because it does not deal with the “meaning” half of comput-
ing’s fundamental dialectic. Rather, it is a theory of the flow of ef-
fect—of how states and state changes, arranged in architectures
and processes, can be affected by and themselves produce behav-
iour. What we call a theory of computation or computability,
that is, is neither more nor less than a general mathematical the-
ory of causality. It does not look like a theory of causality, because
the quest for formality has led it to be formulated in a way that is
totally abstract. But once we let go of that conceit, we can see that
what it is really doing is dealing with is the architecture of cause
and effect, at a slightly more abstract level than in terms of the
physics of concrete devices.

But as I say, these stories—and the work they involve—must
be left for another time. For make no mistake: adjusting our theo-
ries to accommodate these changes will occupy us for at least an-
other twenty-five years. Students should rest assured. As far as I
can tell, most of the intellectual work remains to be done.

What I want to close with is a theme that has been with us since
the beginning: there is more in the blood and bones of working
programmers than has yet been formulated in language that other
cognitive sciences can understand. In a way, I think of twentieth
century computing as semiotic alchemy: a rag-tag bunch of prac-
tices, thick with inarticulate pre-theoretic knowledge, rich and
disorganised-practices that, in spite of their distraction of turning
web pages into gold, nevertheless contains within them the seeds
for revolutionary theory-practices that, like fourteenth and fif-
teenth century alchemy, will, once those theories are developed,
be largely forgotten, perhaps even shunned, until sometime,
around the twenty-third century, someone in science studies

58 Indiscrete Affairs · II

writes a doctoral dissertation arguing that in fact we knew more
back here in the twentieth century than the twenty-first and
twenty-second centuries thought.

Buried in these practices are powerful intuitions—intuitions
about architecture and implementation, about ontology and ab-
straction, about programs and processes and behaviour and state,
about mechanism and effectiveness and how to exploit the tiniest
otherwise irrelevant portions of atomic structure to set up long-
distance correlations with distal states of affairs. Synthetic prac-
tices—not of studying or theorising, but of building. Practices
sobered by the humility that comes not from merely thinking you
understand something, but from actually trying to construct it-
and thereby encountering the fact that you understand virtually
nothing at all.

These practices, still under explosive development, lie in wait
for philosophers and psychologists to mine. Just do not think
they are a subject matter; just do not think we are doing some-
thing special. Forget the original c-word! For ironically, the idea
that computing was really supplying an idea—that computation
was a legitimate, autonomous, subject matter, that the term
‘computational’ denotes a scientifically interesting property—has
been the major impediment blocking our appreciation of the vast
intellectual importance of these synthetic developments.

Or maybe I can put it positively.
Only if we understand that there is no such thing as comput-

ing will we be in a position to appreciate computing’s monumen-
tal impact on our intellectual life.

